电力MOS场效应晶体管(电力场效应晶体管mosfet)

频道:电子元器件 日期: 浏览:399

电力MOS场效应晶体管

本文内容来自于互联网,分享电力MOS场效应晶体管(电力场效应晶体管mosfet)

电力MOS场效应管

  通常主要指绝缘栅型中的MOS型(Metal Oxide Semiconductor FET),简称电力MOSFET(Power MOSFET)

  结型电力场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。 是一种单极型的电压控制全控型器件。

  特点——用栅极电压来控制漏极电流

  输入阻抗高

  驱动电路简单,需要的驱动功率小。

  开关速度快,工作频率高。

  热稳定性优于GTR。

  电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置 。

  电力MOSFET的种类

  按导电沟道可分为P沟道和N沟道。

  耗尽型——当栅极电压为零时漏源极之间就存在导电沟道。

  增强型——对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道。

  电力MOSFET主要是N沟道增强型。

  电力MOSFET的结构

  小功率MOS管是横向导电器件。

  电力MOSFET大都采用垂直导电结构,又称为VMOSFET(Vertical MOSFET)。

  按垂直导电结构的差异,分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET(Vertical Double-diffused MOSFET)。

  这里主要以VDMOS器件为例进行讨论。

  电力MOSFET的工作原理(N沟道增强型VDMOS)

  截止:漏源极间加正电源,栅源极间电压为零。

  P基区与N漂移区之间形成的PN结J1反偏,漏源极之间无电流流过。

  导电:在栅源极间加正电压UGS

  当UGS大于UT时,P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电 。

  电力MOSFET的基本特性

  (1)静态特性

  漏极电流ID和栅源间电压UGS的关系称为MOSFET的转移特性。

  ID较大时,ID与UGS的关系近似线性,曲线的斜率定义为跨导Gfs。

  (2)MOSFET的漏极伏安特性(即输出特性):

  截止区(对应于GTR的截止区)

  饱和区(对应于GTR的放大区)

电力MOS场效应晶体管(电力场效应晶体管mosfet)

  非饱和区(对应GTR的饱和区)

  工作在开关状态,即在截止区和非饱和区之间来回转换。

  漏源极之间有寄生二极管,漏源极间加反向电压时导通。

  通态电阻具有正温度系数,对器件并联时的均流有利。

  (3)动态特性

  开通过程

  开通延迟时间td(on)

  上升时间tr

  开通时间ton——开通延迟时间与上升时间之和

  关断过程

  关断延迟时间td(off)

  下降时间tf

  关断时间toff——关断延迟时间和下降时间之和

  MOSFET的开关速度

  MOSFET的开关速度和Cin充放电有很大关系。

  可降低驱动电路内阻Rs减小时间常数,加快开关速度。

  不存在少子储存效应,关断过程非常迅速。

  开关时间在10~100ns之间,工作频率可达100kHz以上,是主要电力电子器件中最高的。

  场控器件,静态时几乎不需输入电流。但在开关过程中需对输入电容充放电,仍需一定的驱动功率。

  开关频率越高,所需要的驱动功率越大。

  电力MOSFET的主要参数

  除跨导Gfs、开启电压UT以及td(on)、tr、td(off)和tf之外还有:

  (1)漏极电压UDS——电力MOSFET电压定额

  (2)漏极直流电流ID和漏极脉冲电流幅值IDM——电力MOSFET电流定额

  (3)栅源电压UGS—— UGS?>20V将导致绝缘层击穿 。

  (4)极间电容——极间电容CGS、CGD和CDS

  另一种介绍说明:

电力MOS场效应晶体管(电力场效应晶体管mosfet)

  场效应管(Fjeld Effect Transistor简称FET )是利用电场效应来控制半导体中电流的一种半导体器件,故因此而得名。场效应管是一种电压控制器件,只依靠一种载流子参与导电,故又称为单极型晶体管。与双极型晶体三极管相比,它具有输入阻抗高、噪声低、热稳定性好、抗辐射能力强、功耗小、制造工艺简单和便于集成化等优点。

  场效应管有两大类,结型场效应管JFET和绝缘栅型场效应管IGFET,后者性能更为优越,发展迅速,应用广泛。图Z0121 为场效应管的类型及图形、符号。

  一、结构与分类

  图 Z0122为N沟道结型场效应管结构示意图和它的图形、符号。它是在同一块N型硅片的两侧分别制作掺杂浓度较高的P型区(用P 表示),形成两个对称的PN结,将两个P区的引出线连在一起作为一个电极,称为栅极(g),在N型硅片两端各引出一个电极,分别称为源极(s)和漏极(d)。在形成PN结过程中,由于P 区是重掺杂区,所以N一区侧的空间电荷层宽度远大

  二、工作原理

  N沟道和P沟道结型场效应管的工作原理完全相同,只是偏置电压的极性和载流子的类型不同而已。下面以N沟道结型场效应管为例来分析其工作原理。电路如图Z0123所示。由于栅源间加反向电压,所以两侧PN结均处于反向偏置,栅源电流几乎为零。漏源之间加正向电压使N型半导体中的多数载流子-电子由源极出发,经过沟道到达漏极形成漏极电流ID。

  1.栅源电压UGS对导电沟道的影响(设UDS=0)

  在图Z0123所示电路中,UGS <0,两个PN结处于反向偏置,耗尽层有一定宽度,ID=0。若|UGS| 增大,耗尽层变宽,沟道被压缩,截面积减小,沟道电阻增大;若|UGS| 减小,耗尽层变窄,沟道变宽,电阻减小。这表明UGS控制着漏源之间的导电沟道。当UGS负值增加到某一数值VP时,两边耗尽层合拢,整个沟道被耗尽层完全夹断。(VP称为夹断电压)此时,漏源之间的电阻趋于无穷大。管子处于截止状态,ID=0。

  2.漏源电压UGS对漏极电流ID的影响(设UGS=0)

  当UGS=0时,显然ID=0;当UDS>0且尚小对,P N结因加反向电压,使耗尽层具有一定宽度,但宽度上下不均匀,这是由于漏源之间的导电沟道具有一定电阻,因而漏源电压UDS沿沟道递降,造成漏端电位高于源端电位,使近漏端PN结上的反向偏压大于近源端,因而近漏端耗尽层宽度大于近源端。显然,在UDS较小时,沟道呈现一定电阻,ID随UDS成线性规律变化(如图Z0124曲线OA段);若UGS再继续增大,耗尽层也随之增宽,导电沟道相应变窄,尤其是近漏端更加明显。

  由于沟道电阻的增大,ID增长变慢了(如图曲线AB段),当UDS增大到等于|VP|时,沟道在近漏端首先发生耗尽层相碰的现象。这种状态称为预夹断。这时管子并不截止,因为漏源两极间的场强已足够大,完全可以把向漏极漂移的全部电子吸引过去形成漏极饱和电流IDSS (这种情况如曲线B点):当UDS>|VP|再增加时,耗尽层从近漏端开始沿沟道加长它的接触部分,形成夹断区 。

  由于耗尽层的电阻比沟道电阻大得多,所以比|VP|大的那部分电压基本上降在夹断区上,使夹断区形成很强的电场,它完全可以把沟道中向漏极漂移的电子拉向漏极,形成漏极电流。因为未被夹断的沟道上的电压基本保持不变,于是向漏极方向漂移的电子也基本保持不变,管子呈恒流特性(如曲线BC段)。但是,如果再增加UDS达到BUDS时(BUDS称为击穿电压)进入夹断区的电子将被强电场加速而获得很大的动能,这些电子和夹断区内的原子碰撞发生链锁反应,产生大量的新生载流予,使ID急剧增加而出现击穿现象(如曲线CD段)。

  由此可见,结型场效应管的漏极电流ID受UGS和UDS的双重控制。这种电压的控制作用,是场效应管具有放大作用的基础。

  三、特性曲线

  1.输出特性曲线

  输出特性曲线是栅源电压UGS取不同定值时,漏极电流ID 随漏源电压UDS 变化的一簇关系曲线,如图Z0124所示。由图可知,各条曲线有共同的变化规律。UGS越负,曲线越向下移动)这是因为对于相同的UDS,UGS越负,耗尽层越宽,导电沟道越窄,ID越小。

  由图还可看出,输出特性可分为三个区域即可变电阻区、恒流区和击穿区。

  ◆可变电阻区:预夹断以前的区域。其特点是,当0<UDS<|VP|时,ID几乎与UDS呈线性关系增长,UGS愈负,曲线上升斜率愈小。在此区域内,场效应管等效为一个受UGS控制的可变电阻。

  ◆恒流区:图中两条虚线之间的部分。其特点是,当UDS>|VP|时,ID几乎不随UDS变化,保持某一恒定值。ID的大小只受UGS的控制,两者变量之间近乎成线性关系,所以该区域又称线性放大区。

  ◆击穿区:右侧虚线以右之区域。此区域内UDS>BUDS,管子被击穿,ID随UDS的增加而急剧增加。

  2.转移特性曲线

  当UDS一定时,ID与UGS之间的关系曲线称为转移特性曲线。实验表明,当UDS>|VP|后,即恒流区内,ID 受UDS影响甚小,所以转移特性通常只画一条。在工程计算中,与恒流区相对应的转移特性可以近似地用下式表示:Id=Idss(1-Ugs/Vp)(1-Ugs/Vp)

  式GS0127中VP≤UGS≤0,IDSS是UGS=0时的漏极饱和电流。

关键词:晶体管效应力场